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in the normal way by the settings of the ( potentio- 
meters and the multipliers are used to give a point to 
point scan across the convergent beam discs. Apart 
from the multipliers very little additional hardware is 
required since for small angles the change in angle AO 
across a disc is linearly related to the change in each 
(n by the relation Afn=(2On/2)AO, where On is the 
Bragg angle. 

The intensities from distorted crystals are given by 
solving equation (45) of Howie & Whelan (1961) re- 
written in the present notation as 

dUn 
dz --2~zi((n+fl'n)Un+itr ~r En_n . Un , (8) 

h 

where fl~ = d[g.  R(z)]/dz and g is the reciprocal lattice 
vector and R(z) the vector describing the displacement 
of the lattice at a depth z. Two function generators 
giving the x and y components of dR/dz are sufficient 
to permit the calculation of fl~, for all n, since 

dRz dRu~ 
fl ' .=lg.I.c. ~ -  + d. dz ] '  

where cn and dn are constants defining the angle be- 
tween g and R. Changing the slope of a ramp function 
generator which feeds the function generators allows 
the depth of the distortion within the crystal to be 
varied with the twist of a knob. 

The n-beam electron microscope image of disloca- 
tions within a crystal can be rapidly obtained by using 
the foregoing technique on analog computers equipped 
with independently switched integrators and control 
logic. 

In conclusion, the analog computer is seen as an 
invaluable adjunct to the digital machine in the field 
of dynamic electron diffraction computation when it is 
sufficient to include the interactions between a few 
strong beams. Additionally the analog circuit offers a 
fresh way of visualizing diffraction problems. 

It is a pleasure to acknowledge the stimulating and 
helpful discussion of P. Goodman and A. F. Moodie 
and their continued interest in the work. The author is 
indebted to A. F. Moodie for acquainting him with the 
arguments in § 2. 
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Indexing of X-Ray Powder Patterns. Part L The Theory of the Trielinie Case 
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In a triclinic system, the squares of reciprocal spacings of any seven linearly independent X-ray powder 
lines which belong to the same lattice fulfill a Diophantine equation containing their Miller indices, 
which involves a 7 x 7 determinant. This can be expanded in minors which are integers. Theory is 
developed which breaks the problem of solving this equation into smaller steps, more easily amenable 
to numerical evaluation. The triclinic case has not yet been tried on a practical example, but the method 
has been already used in practice for systems of higher symmetry, for which the computational labor is 
much reduced. 

Introduction 

It would appear from literature that the indexing prob- 
lem for a triclinic system is very unlikely to succeed in 

* Deceased 4 April 1968. 

practice. Most authors restrict themselves to special 
cases: no arbitrary angles in the unit cell (Hesse, 1948; 
Lipson, 1949; Stosick, 1949), or with unusual classes 
of compounds, such as long-spacing compounds 
(Vand, 1948). The method of Ito (Runge, 1917; Ito, 
1950) attacks the problem from the low symmetry 
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rather than from the higher symmetry aspect and has to 
be followed by a cell-reduction procedure. Such proce- 
dures are discussed by Buerger (1957) and Azaroff & 
Buerger (1958). Lastly the work of de Wolff (de Wolff 
1957, 1958, 1967) which uses concepts of zone rela- 
tions, most closely approaches the theory described 
in this paper. 

When working for the Joint Committee on Powder 
Diffraction Standards on automatic computer handling 
of X-ray powder data file, we have developed a useful 
theory for indexing X-ray powder patterns. We tested 
the theory by hand on actual powder patterns from the 
file up to orthorhombic symmetry and found it to work 
well. Since the higher symmetry procedures are only 
special cases of a more general triclinic case, we are 
presenting this case first, although we did not test the 
practical feasibility of the computation in practice. 
The triclinic case is too complex to be solved by hand, 
but it is within practical feasibility limits of electronic 
computers. We hope to write the necessary computer 
programs in the near future. 

We hope that this paper will be followed by others 
where the theory will be developed for all crystal 
systems and Bravais lattices, and in which practical 
examples will be presented where available. 

Initial equations 

All the indexing methods for X-ray powder patterns 
are based on the consideration of the equation (quad- 
ratic f o rm) fo r  the square of the reciprocal lattice 
vector, which for triclinic the system is 

Qj = Ah~ + Bk~ + CI~ + Dkflj + El~h~ + Fhjk~ , (1) 
where 

Q~= 1/d~ 

and where dj is the direct spacing of the j th  powder 
line of the pattern, and hi, ks, lj are the Miller indices. 

The six constants .4, B , . . .  F are related to the edges 
and angles of the reciprocal unit cell by 

.4 = a .2, B = b .2, C = c .2, D = 2b'c* cos ct*, 

E=2c*a* cost* ,  F=2a*b* cos 7*. (2) 

Once . 4 , B , . . .  F are known, the reciprocal cell con- 
stants can be calculated from relations 

a*=  I/A, b*= l/B, c*= I/C 

cos c¢* =D/2I/J~C, cos f l * = E / 2 / C A ,  cos ~,*=F/2~f4B 

Direct cell constants can then be obtained from the 
reciprocal constants by the usual methods. 

The indexing problemconsists in obtaining A, B , . . .  F, 
which are unknown, from the known set of Qj., meas- 
ured experimentally. Unfortunately, not only are the 
six irrational numbers A, B, . . .  F unknown, but also 
the Miller indices h~,kj, lj. We therefore cannot solve 
the indexing problem by the methods of ordinary al- 
gebra, as no matter how many equations (1) we take, 
we have always more unknowns than knowns. How- 

ever, as the Miller indices are integers, it is possible to 
obtain a solution to the problem by application of 
number theory (Diophantine equations). 

The indexing method 

Because (1) contains six irrational numbers A, B , . . .  F, 
we must take at least seven different equations (1) to 
introduce a constraint and so make them soluble. Let 
us choose any seven lines of the powder pattern, label 
them j =  1 . . . .  7, and construct a determinant 

QxQ2 . . . . . . . .  Q7 
2 2 hah z . . . . . . . . .  h~ 
2 2 klk2 . . . . . . . . .  k27 

A= (3) 

. . . . . . . . . . .  . . .  

h l k l h 2 k 2  . . .  h 7 k  7 

If the seven Qj are serf-consistent through (1), this 
determinant is necessarily zero, because its first row is 
a linear combination of the remaining rows. Thus 

A = 0 .  (4) 

After expanding (3) into minors of Qj, 

.Sp~Qj=O j = l , . . .  7 ,  (5) 

where p~ is a minor obtained from (3) by omitting the 
first row of Qj and the j th  column containing Q~. 

The equation (5) is a Diophantine equation, as the 
minors pj are integers. 

The following six Diophantine equations are valid: 

~r p~h~=O 

Xpjk~=O 

Zp jh jk j=O j = l , . . .  7 .  (6) 

They can be obtained by replacing the row of Qj in (3) 
by successive rows of (3) and by expanding into minors 
p~. The result (6) follows, as any determinant with two 
identical rows is equal to zero. 

The basic principle of our method is to take a septet 
of Qj and then solve (5) in integers pj. Each pj repre- 
sents a Diophantine equation in terms of the appro- 
priate Miller indices hkl, which is solved next. 

For example 

2 2 hlh 2 . . . . . . . . .  h 6 
2 2 klk  2 . . . . . . . . .  k~ 

P7 = . . . . . . . . . . . . . .  

hlklhzk2 . . .  h6k 6 

represents a Diophantine equation with 18 unknown 
integers. 
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An easier procedure is to solve, after obtaining pj, 
the equations (6) for Miller indices. The first three 
equations give the magnitudes of hi, kj, lj, the last three 
their signs. 

A question might be raised why the seven equations 
(1) should not be solved for hkl directly. The answer is 
that by breaking the problem into smaller steps (5) 
and (6) we reduce the formidable problem (1) into 
more amenable smaller units of computation which 
are just about of a size manageable on a present-day 
electronic computer. 

The practical solution of equations (6) can be faci- 
litated as follows: 

The first three equations formally represent a single 
equation of a type 

,.£p~x~=O, j = l , . . .  7 .  (7) 

This is a general form of the famous Legendre equation 

a x  2 + b y  2 = CZ 2, 

where a,b,c are natural numbers and x,y,z  are inte- 
gers. This equation is not always soluble. 

In our case, because of (1), equation (7) is necessarily 
soluble, and it must have at least three independent 
solutions, one corresponding to the septet hj, one to 
k~, one to lj. If a solution cannot be found (or if (5) 
cannot be fulfilled), Qj do not form a self-consistent 
set, i.e. the seven powder lines cannot all correspond 
to the reciprocal points belonging to the same crystal 
lattice. At least one of the Qj must belong to an im- 
purity, fl line or other experimental error. 

It is therefore only necessary to solve one equa- 
tion (7) and then assign to its three independent 
solutions the three sets of Miller indices. It is irrele- 
vant which solution is used for which set, as this 
interchangeability merely corresponds to relabeling 
of the three crystal axes. 

Geometrical interpretation 

The above equations have the following geometrical 
interpretation. The values Qj can be regarded as seven 
components of a known irrational vector Q in a seven- 
dimensional space. The integers p~ can be regarded as 
seven components of an auxiliary integer vector p 
orthogonal to Q. It is not obvious that such a vector 
exists, but equation (4) guarantees its existence. In the 
same space, there are six other unknown integer vec- 
tors, the components of which are hy, k2 , . . ,  hjkj. The 
vector Q is a linear combination of the six vectors. The 
vector p is orthogonal to all these six vectors, so that 
these and also Q must all lie in a single six-dimensional 
hyperplane, the normal of which is p. Our indexing 
method is based on the fact that it is easier to find the 
hyperplane and then the six unknown integer vectors 
within it via the auxiliary vector p than to look for 
them in the seven-dimensional space directly. 

The use of invariants 

One disadvantage of solving (1) or the smaller steps 
(5) and (6) directly in terms of Miller indices is that 
if one solution exists, there necessarily exists a family 
of an infinity of solutions obtained from it by unimodu- 
lar transformations. It is therefore profitable to look 
for a solution in some intermediate quantities which are 
invariant to unimodular transformations, and convert 
these into Miller indices at a later stage. Let us con- 
sider an integer 

hi hj hr 

Di~r= k¢ kj kr i,j ,r= l, . . . 7 (8) 

h l j / r  

which has a geometrical interpretation as being equal 
to a volume in space of integer vectors hj of a parallel- 
epiped, the sides of which are the three vectors in- 
volved. Thus if these vectors are coplanar, Dljr=O. 
Also Dijr preserves its magnitude on unimodular 
transformation, only changing sign when the trans- 
formation is improper. There are 343 integers Dijr, but 
since interchange of indices merely changes sign, and 
any two or three equal indices cause D~jr to vanish, 
there are in general only 35 non-zero D~jr which are 
different in magnitude, whereas there are 21 values of 
hj, kj, l~ for j = l , . . .  7. Thus Dljr are not all inde- 
pendent, and relations exist amongst Dijr which are 
called fundamental Laplace identities. We are not 
going to enumerate all of them, because they are 
treated for example by Turnbull (1960). One typical 
example is 

DI23D456-- D234DI56-Jr DI34D256- DI24D356 = 0 . (9) 
When two subscripts become equal (for example if we 
change 4 into 6), we obtain a so-called extensional 

D236D156 - -  D136D256 + D126D356 --~ 0 . (1 0 )  

These identities are useful for calculation of one D~jr 
if the others within the identity are already known, or 
for checking purposes when all D¢jr were derived by 
other means. 

All the following equations can be proved by the 
substitution of the expanded determinant (8) into them. 

There are 21 equations 

~rptD~m=O i , j , k = l , . . .  7 (11) 

and 105 equations 

Xp~Dtj~Dkrs=O i, j ,k,r ,s= 1, . . .  7 (12) 

which are analogous to the six equations (6). However, 
as Dtj~ vanish when two or three subscripts become 
equal, from the computational point of view equations 
(11) have the advantage that each contains only five 
non-zero terms and equations (12) have only three non- 
zero terms and are therefore easier to handle than 
equations (6) with seven non-zero terms, each. In ad- 
dition, not all the 126 equations (11) and (12) need be 

A C 24A - 5 
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used, as some of Dljr can be obtained from the others 
by (9) and (10). 

Once all the D~j~ are calculated, the next task is to 
calculate hi, kj, l~ from them. This can be best accom- 
plished by using some of 35 equations of four terms 
each, exemplified by 

x1D234 - x2D134 -]- x3D124 - x4D123 = 0 (13) 

where three independent solutions in x stand in turn 
for h, then k, then l. 

Because there is an ambiguity in the choice of axes 
in a triclinic case, three hkl points can be freely chosen 
subject to one condition (13) and four others can be 
calculated from these. In this way, any one set of 21 
Miller indices can be readily calculated. The one set of 
Miller indices will be one member of the infinite set 
obtainable by unimodular transformations. Again, not 
all the 35 equations (13) need be used, but only enough 
to determine all the Miller indices of the required set. 

Conclusions 

The above mathematics may appear too complex to 
an ordinary powder-diffractionist to be of any practi- 
cal use, but the greatest practical computational problem 
is the solution of equation (5) in integers within ob- 
servational tolerances. Once this equation is solved, 
all the rest of the equations deal in integers, are there- 
fore exact, and are easier to solve than equation 
(5). 

The treatment greatly simplifies when crystal 
systems of higher symmetry are considered. The hexa- 
gonal and tetragonal systems can be solved at once by 
the aid of a simple nomograph, and the solution of the 
orthorhombic system requires only a moderate com- 
putational effort. However, the monoclinic and the 
triclinic case will require the use of a computer. 

This paper was written in connection with informa- 
tion-retrieval studies supported by the Joint Committee 
on Powder Diffraction Standards through the Ameri- 
can Society for Testing and Materials (Pennsylvania 
State University Grant 2212). Moral encouragement 
as well as financial support is gratefully acknowledged. 
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A general theory of grain and phase boundaries (the O-lattice theory) is further developed and tested 
on alkali feldspars with exsolution lamellae, since measurements exist for the structures of the two-phase 
system (perthitic feldspars) as well as for the orientation of the phase boundary. It is shown that in this 
case the adaptation of two monoclinic structures is energetically preferable to the adaptation of a mono- 
clinic and a triclinic one. The phase boundary energy is markedly lower in the former case. Thus, a 
pseudo-monoclinic structure is produced out of the triclinic by periodic submicroscopic twinning. The 
calculated orientation of the phase boundary is in close agreement with the measurements. 

Introduction 

Since most materials are polycrystalline, the impor- 
tance of the study of crystal interfaces does not need 
to be emphasized. One usually distinguishes between 

subgrain boundaries consisting of distinct dislocation 
networks and high-angle boundaries where a disloca- 
tion density would be so high that the dislocation cores 
would merge so that at first sight a boundary might 
appear as a highly disturbed interface. A distinction 


